Ø Personal Computer.
Computers are tools used to process the
data according to the orders which have been formulated. Computer word
originally used to describe people who perkerjaannya perform arithmetic
calculations, with or without the tools, but the meaning of this word is then
transferred to the machine itself. Origins, processing information almost
exclusively related to arithmetical problems, but modern computers are used for
many tasks unrelated to mathematics.
Broadly, the computer can be defined as an
electronic device that consists of several components, which can cooperate
between the components with one another to produce a program and information
based on existing data. The computer components are included: Screen Monitor,
CPU, Keyboard, Mouse and Printer (as a complement). Without a computer printer
can still do its job as a data processor, but not limited to the monitor screen
looks in print form (paper).
In such a definition there is a tool like a
slide rule, mechanical calculators types ranging from abacus and so on, until
all contemporary electronic computers. The term better suited for a broad sense
as "computer" is "that process information" or
"information processing systems."
Nowadays, computers are becoming more
sophisticated. However, before the computer is not small, sophisticated, cool
and light now. In the history of computers, there are 5 generations of computer
history.
- The first generation
With the onset of the Second World War, the
countries involved in the war sought to develop computers to exploit their
potential strategic computer. This increased funding for computer development
and accelerate technical progress. In 1941, Konrad Zuse, a German engineer to
build a computer, the Z3, to design airplanes and missiles.
Party allies also made other progress in
the development of computer power. In 1943, the British completed a secret
code-breaking computer called Colossus to decode secret German. The Colossus's
impact influenced the development of the computer industry because of two
reasons. First, Colossus is not a versatile computer (general-purpose
computer), it was only designed to decode secret messages. Second, the
existence of the machine was kept secret until decades after the war ended.
The work done by the Americans at that time
produced a broader achievement. Howard H. Aiken (1900-1973), a Harvard engineer
working with IBM, succeeded in producing electronic calculators for the U.S.
Navy. The calculator is a length of half a football field and has a range of
500 miles along the cable. The Harvard-IBM Automatic Sequence Controlled
Calculator, or Mark I, an electronic relay computer. He uses electromagnetic
signals to move mechanical components. The machine was slow (it takes 3-5
seconds per calculation) and inflexible (order calculations can not be
changed). The calculator can perform basic arithmetic and more complex
equations.
The development of the present day computer
was the Electronic Numerical Integrator and Computer (ENIAC), which is created
by the cooperation between the U.S. government and the University of
Pennsylvania. Consisting of 18,000 vacuum tubes, 70,000 resistors and 5 million
soldered joints, the computer is a machine that consume enormous power of
160kW.
This computer was designed by John Presper
Eckert (1919-1995) and John W. Mauchly (1907-1980), ENIAC is a versatile
computer (general purpose computer) that work 1000 times faster than the Mark
I.
In the mid-1940s, John von Neumann
(1903-1957) joined the University of Pennsylvania team, initiating concepts in
computer design that is up to 40 years is still used in computer engineering.
Von Neumann designed the Electronic Discrete Variable Automatic Computer
(EDVAC) in 1945 with a memory to hold both programs and data. This technique
allows the computer to stop at some point and then resume her job back. Key to
the von Neumann architecture is a central processing unit (CPU), which allowed
all computer functions to be coordinated through a single source. In 1951, the
UNIVAC I (Universal Automatic Computer I) made by Remington Rand, became the
first commercial computer that utilizes a model of the Von Neumann
architecture.
Neither the U.S. Census Bureau and General
Electric have UNIVAC. One of the impressive results achieved by the UNIVAC
dalah success in predicting victory Dwilight D. Eisenhower in the 1952
presidential election.
First generation computers were
characterized by the fact that operating instructions were made specifically
for a particular task. Each computer has a different binary code program called
"machine language" (machine language). This causes the computer difficult
to program and the speed limit. Another feature is the use of first generation
of computer vacuum tube (which makes the computer at that time very large) and
magnetic cylinders for the storage of data.
- The second generation
In 1948, the invention of the transistor
greatly influenced the development of the computer. The transistor replaced the
vacuum tube in televisions, radios, and computers. As a result, the size of the
electric machines is reduced drastically.
The transistor used in computers began in
1956. Another invention is the development of magnetic-core memory is the
development of second generation computers smaller, faster, more reliable, and
more energy efficient than their predecessors. The first machine that utilizes
this new technology is the supercomputer. IBM makes supercomputer named
Stretch, and Sprery-Rand makes a computer named LARC. These computers, which
was developed for atomic energy laboratories, could handle large amounts of
data, a capability much in demand by atomic scientists. The machine is very
expensive and tend to be too complex for business computing needs, thereby
limiting. There are only two LARC ever installed and used: one at the Lawrence
Radiation Labs in Livermore, California, and the other in the U.S. Navy Research
and Development Center in Washington, DC The second generation of computers
replacing machine language to assembly language. Assembly language is a
language that uses abbreviations to replace the binary code.
In the early 1960s, computers began to
appear successful second generation in the business, in universities, and in
government. The second generation of computers is a computer which used
transistors. They also have components that can be associated with the modern
day computer: printers, storage, disk, memory, operating system, and programs.
One important example is the computer at
this time in 1401 that is widely accepted in the industry. In 1965, almost all
large businesses use computers second generation to financial
memprosesinformasi.
The program stored in the computer
programming language that is in it gives flexibility to the computer.
Flexibility is increased performance at a reasonable price for business use.
With this concept, the computer can print customer invoices and minutes later
design products or calculate paychecks. Some programming languages began to
appear at that time. Programming language Common Business-Oriented Language
(COBOL) and FORTRAN (Formula Translator) came into common use. These languages
replaced cryptic binary machine code with words, sentences, and mathematical
formulas are more easily understood by humans. This makes it easy for someone
to program a computer. A wide variety of new careers (programmer, systems
analyst, and expert computer systems). Industr software also began to appear
and grow during this second-generation computer.
- The third generation
Although the transistors in many respects
the vacuum tube, but transistors generate considerable heat, which can
potentially damage the internal parts of the computer. Quartz stone (quartz
rock) eliminates this problem. Jack Kilby, an engineer at Texas Instruments,
developed the integrated circuit (IC: integrated circuit) in 1958. IC combined
three electronic components onto a small silicon disc, made from quartz sand.
Scientists later managed to fit more components into a single chip, called a
semiconductor. As a result, computers became ever smaller as more components
were squeezed onto the chip. Other third-generation development is the use of
the operating system (operating system) which allows the engine to run many
different programs at once with a central program that monitored and
coordinated the computer's memory.
- The fourth generation
After IC, the only place to go was down the
size of circuits and electrical components. Large Scale Integration (LSI) could
fit hundreds of components on a chip. In the 1980s, Very Large Scale
Integration (VLSI) contains thousands of components in a single chip.
Ultra-Large Scale Integration (ULSI)
increased that number into the millions. The ability to install so many
components in a chip that is half the coins berukurang encourage lower prices
and the size of the computer. It also increased their power, efficiency and
reliability. Intel's chips are made in the year 4004 1971membawa advances in IC
by putting all the components of a computer (central processing unit, memory,
and control input / output) in a very small chip. Previously, the IC made to do
a certain task specific. Now, a microprocessor could be manufactured and then
programmed to meet all the requirements. Not long after, each household devices
such as microwave ovens, televisions, and cars with electronic fuel injection
(EFI) is equipped with a microprocessor.
Such developments allow ordinary people to
use a regular computer. The computer is no longer a dominance of large
corporations or government agencies. In the mid 1970s, computer assemblers
offer their computer products to the general public. These computers, called
minicomputers, sold with a software package that is easy to use by the layman.
The software is most popular when it was word processing and spreadsheets. In
the early 1980s, such as the Atari 2600 video game consumer interest in home
computers are more sophisticated and can be programmed.
In 1981, IBM introduced the use of Personal
Computer (PC) for use in homes, offices, and schools. The number of PCs in use
jumped from 2 million units in 1981 to 5.5 million units in 1982. Ten years
later, 65 million PCs in use. Computers continued their trend toward a smaller
size, from computers that are on the table (desktop computer) to a computer
that can be inserted into the bag (laptop), or even a computer that can be hand
held (palmtop).
IBM PC to compete with Apple's Macintosh
line, introduced in. Apple Macintosh became famous for popularizing the
computer graphics system, while his rival was still using a text-based
computer. Macintosh also popularized the use of mouse devices.
At the present time, we know the journey
IBM compatible with the use of the CPU: IBM PC/486, Pentium, Pentium II,
Pentium III, Pentium IV (series of CPUs made by Intel). Also we know AMD K6,
Athlon, etc.. This is all included in the class of fourth generation computers.
Along with the proliferation of computer
usage in the workplace, new ways to explore the potential to be developed.
Along with the increased strength of a small computer, these computers can be
connected together in a network to share a memory, software, information, and
also to be able to communicate with each other. The computer network allows a
single computer to establish electronic collaboration to complete a task
process. By using the direct cabling (also called a Local Area Network or LAN),
or [telephone cable, the network can be very large.
- The fifth generation
Defining the fifth generation computer
becomes quite difficult because this stage is still very young. Examples
imaginative fifth generation computer is the fictional HAL9000 computer from
the novel by Arthur C. Clarke's 2001: A Space Odyssey. HAL displays all the
desired functionality of a fifth generation computers. With artificial
intelligence (artificial intelligence or AI), HAL may have enough reason to
hold conversations with humans, using visual input, and learn from his own
experience.
Although it may be the realization of
HAL9000 is still far from reality, many of the functions that had been
established. Some computers can receive verbal instructions and imitate human
reasoning. The ability to translate a foreign language also becomes possible.
The facility is deceptively simple. However, such facilities become much more
complicated than expected when programmers realized that human understanding
relies heavily on context and meaning rather than just translate the words
directly.
Many advances in the field of computer design and technology are increasingly enabling the manufacture of fifth generation computers. Two such engineering advances are parallel processing capabilities, which will replace the non-Neumann model. Non Neumann model will be replaced with a system that is able to coordinate many CPUs to work in unison. Another advance is superconductor technology, which allows the flow of electricity with no resistance, which in turn can accelerate the speed of information.
Japan is a country well known in some
attributes of fifth generation computers. Institutions ICOT (Institute for new
Computer Technology) was also set up to make it happen. Many news stating that
the project has failed, but some other information that the success of this
fifth generation computer project will bring new changes to the paradigm of
computerization in the world.
Ø Teknlogi 1G-4G
The development of communication technology
in the world has been growing very rapidly. Start of 0G, continues to 0.5g, 1G,
1.5G, until now used is 2G and 3G. To see what it actually predecessor
technologies 2G and 3G, then let us discuss each one. However, before starting
the discussion, it should be noted that the discussion provided here is not
entirely complete, since this paper are the only 2G and 3G technology.
- 0G, 0.5g (Zero Generation)
0G technology is a communication technology
that initiate the formation of the next generation of telecommunications.
Actually, at the beginning of this technology is found not to be named with
technology 0G (Zero Generation). The beginning of this technology are named
with a mobile radio telephone (mobile telephone radio).
This technology uses radio-based network
(radiotelephone)-specific, which means separate and closed off from other
similar networks-as well as the limited network coverage. Even so, the network
is able to connect to the telephone network today. Some of the many
telecommunications standard used by this generation are:
PTT (Push-to-Talk or Press-to-Transmit)
Is a communication network technology that
uses half-duplex method (which is similar to a walkie-talkie, only this
technology is connected with the cellular network) used to communicate. Until
today PTT is implemented on the cellular network, but nothing to Indonesian
carriers that support this technology.
MTS (Mobile Telephone System)
Is a half-duplex radiotelephone technology
that is cultivated by the Bell System and the first time in St. implemetasikan.
Louis on June 17, 1946. At first there were only 3 channels of communication,
then increased to 32 channels with 3 frequencies to serve all customers.
Kekurangnnya handset is its weight reaches 80 pounds or 29 kg, and a network
that is confined to the urban areas alone. In the 1980s, this technology has
not been used in America.
IMTS (Improved Mobile Telephone Service)
Is a full-duplex radiotelephone technology
that uses wave Low VHF (35-44 MHz, 9 channels), High VHF (152-158 MHz, 11
channels), and UHF (454-460 MHz, 12 channels). Introduced in 1969 as a
substitute for MTS technology.
AMTS (Advanced Mobile Telephone System)
OLT (Offentlig Landmobil Telephony or
Public Land Mobile Telephony)
MTD (Mobilelefonisystem Mobile telephony
system D or D)
Autotel / PALM (Automated Public Land
Mobile)
ARP (Autoradiopuhelin or car radio
phone)
B-Netz
In 0G generation, mobile phone systems
(mobile telephone) can be distinguished from early radio telephone system
(mobile radio telephone). The difference is in the mobile telephone system for
communication should be through commercial services Public Switched Telephone
Network (PSTN), which serves as the operator to direct the call. While the
system does not need a radio telephone network, because of direct communication
between the sender and the recipient of the call through a closed network.
Radiotelephone communications systems commonly applied to the initial police
radio network or a taxi. Radio telephone system is known by the trade name WCCs
(Wireline Common Carriers, AKA telephone companies), RCCs (Radio Common
Carriers), and two-way radio dealers.
Mobile phone system (mobile telephone) is
generally installed in a car or truck, also some are shaped like a briefcase.
Usually, the components of the transmitter and receiver or transceiver
(transmitter-receiver) mounted in the trunk of the vehicle and connected to the
"head" (dial, display, and handset) is located near the driver's
seat.
Tabel 1 Advantages and Disadvantages
Technolog 0G, 0.5G
Advantages
|
Disadvantages
|
Could serve only voice
communications and an early technology of mobile communication (mobile) are
implemented and commercialized
|
Method of transmission is
half-duplex, although the development of supporting full-duplex
|
Limited number of
subscriber
|
|
Limited reach of its network
|
|
Does not support data communications
|
- 1G, 1.5G (First Generation)
1G technology is a first-generation
wireless technologies such as cellular telephone (cellphone, there is also a
mobile phone call). This technology is the standard for analog cellular phones
were introduced around the 1980s. Communication tool in the generation of this
technology was originally used for military purposes, but in its development
the general public who use this communication technology.
Communication techniques used in this
generation is a Frequency Division Multiple Access (FDMA). This technique
allows the sharing of frequency allocation on a cell to use all existing
customers in these cells, meant for each customer while talks will have its own
distinct frequency with the frequency of other customers in the same cell. This
principle is similar to the workings of a radio station that broadcast each use
a different frequency from one station to another station). Most of the many
telecommunications standard 1G include:
NMT (Nordisk MobilTelefoni or Nordic
Mobile Telephony)
1G technology is evolving around the 1980's
that are still in operation in 30 countries in Europe generally. This
technology consists of NMT450 (Nordic Mobile Telephones/450) developed by
Ericsson and Nokia in 1981 that operates at 450 MHz using the system FDD
(Frequency Division Duplex) based FDMA. Then NMT-F which is the French version
of NMT900 introduced in 1986 that operates at 900 MHz.
AMPS (Advanced Mobile Phone System) or
IS-136
1G is a technology developed by Bell Labs
circa 1970, used in the United States and no longer in use around 2000. This
technology uses a frequency of 800 MHz Cellular FM band, how this technology
works similar to the existing technology at IMTS 0G.
CDPD (Cellular Digital Packet Data)
1G technology was introduced in 1992.
Technology that operates at a frequency of 800 MHz and 900 MHz this gives the
ability to D-AMPS/AMPS technology for voice and data communications networks to
use channel up speed of 19.2 Kbps. As data packets on the network, this
technology can run applications Internet Protocol (IP) and also acts as an
extension of the internet where users can find online continuously. Then in May
2000 AT & T introduced a service that is PocketNet HDML mobile internet
applications (similar to the WAP) using CDPD. Handsets that support this
service then created with the ability to transfer data, voice, and mobile
internet. CDPD is a byproduct of the AMPS technology for data services only,
but does not grow because it is expensive and fails to compete.
Table 2 Advantages and
Disadvantages of Technology 1G, 1.5G
Advantages
|
Disadvantages
|
Serving
voice communication and small data
|
Can not serve data communication in
high speed and large
|
Small traffic capacity
|
|
The number of customers that can be
accommodated in one cell slightly
|
|
Wasteful use of the frequency
spectrum for the user to use a single frequency channel
|
|
Intemodulasi noise (the sound is not
clear)
|
- 2G (Second Generation)
2G is a second-generation communication
technologies that emerge as the market demands and the need for better quality.
Generation 2G already using digital technology, as well as the mechanisms of
Time Division Multiple Access (TDMA) and Code Division Multiple Access (CDMA)
communication techniques.
2G standard technologies based on TDMA is:
D-AMPS (Digital AMPS) or IS-54 or IS-136
in the United States and Canada
Is TDMA-based 2G technology which is the
development of the AMPS (Advanced Mobile Phone System). Be operating at a
frequency of:
- 800 MHz (based on the IS-54 standard, the frequency range 824-849 MHz and 869-894 MHz)
- 1900 MHz (based on the IS-136 standard for dual-band support 800 MHz and 1900 MHz)
D-AMPS is a digital mobile phone already,
but the network still supports analog AMPS network.
GSM (Global System for Mobile
Communications) in Europe and Asia
2G TDMA-based technology is being developed
by the study group called the Groupe Special Mobile (GSM) to study and develop
a public telecommunication system in Europe. In 1989, this task is left to the
European Telecommunication Standards Institute (ETSI) and the GSM Phase I
launched in mid-1991.
The reason for the emergence of GSM with
the requirements of the new network system that can be applicable networking
standards and can be applied throughout the European region. In the new system
there should also be the ability to anticipate the user mobility and the
ability to serve more users to accommodate the addition of new users.
GSM network is the most widely used network
in the world, in 1993, there were 36 GSM networks in 22 countries, and the end
of 1993 to 48 countries with 70 operators and customers amounted to 1 billion.
GSM is now used in 212 countries by the number of subscribers reached 2 billion
worldwide.
GSM also supports 14.4 Kbps speed data
communication (just enough to serve SMS, download an image, or a ringtone MIDI
only).
Table 3 Frequencies Used By Network
GSM (ETS By 05.05)
Sistem
|
Frequencies (MHz)
|
Uplink Frequency
(MHz)
|
Downlink Frequency
(MHz)
|
Frequency
Channel
|
GSM 400
|
450
|
450,4-457,6
|
460,4-467,6
|
259-293
|
GSM 400
|
480
|
478,8-486,0
|
488,8-496,0
|
306-340
|
GSM 850
|
850
|
824,0-849,0
|
869,0-894,0
|
128-251
|
GSM 900 (P-GSM)
|
900
|
890,0-915,0
|
935,0-960,0
|
1-124
|
GSM 900 (E-GSM)
|
900
|
880,0-915,0
|
925,0-960,0
|
0-124 & 975-1023
|
GSM-R (R-GSM)
|
900
|
876,0-880,0
|
921,0-925,0
|
955-973
|
DCS 1800
|
1800
|
1710,0-1785,0
|
1805,0-1880,0
|
512-885
|
PCS 1900
|
1900
|
1850,0-1910,0
|
1930,0-1990,0
|
512-810
|
The term other than GSM in some countries:
1. A1-Net (GSM 900 MHz) in Austria
2. E-Netz (GSM 1800 MHz) in Germany
3. DCS (Digital Communications Systems) in
the United States
4. PCS (Personal Communications Service) in
the United States (similar NCDMA standard and GSM 1900 networks operating at
frequencies 1850 to 1990 MHz)
PDC (Personal Digital Celluler) in Japan
Is TDMA-based 2G technology which was first
launched in March 1993. Is a telecommunications network based on TDMA developed
Japan and applies only in Japan alone. Basic technology is the same as GSM.
Operated by NTT DoCoMo on the frequency:
1. 800 MHz (downlink 810-888 MHz, 893-958
MHz uplink)
2. 1500 MHz (downlink 1477-1501 MHz,
1429-1453 MHz uplink)
PHS (Personal Handy System) or PAS
(Personal Access System) in China, Japan, Taiwan, and several Asian countries
Is TDMA-based 2G technology which has the
capability of two-way calling, roaming, high-speed services of data, voice
clear, and handover. PHS in Japan operated by J-Phone, the range of frequencies
between 1895-1918 MHz.
CSD (Circuit Switched Data) in the
United States
Is TDMA-based 2G technology that uses a
single radio time slot to transmit data at a speed of 9.6 kbps on GSM and
Switching Subsystem. It can also be connected to a modem to the regular
telephone network (PSTN) and dial-up service.
HSCSD (High Speed Circuit Switched
Data)
Is TDMA-based 2G technology which has a
mechanism of circuit-switched data transfer (similar to GSM). But have an
advantage in the ability to use more than one timeslot of 8 timeslot in GSM
data packets to one connection (GSM only can use one timeslot for a
connection). This capability makes HSCSD can achieve data transfer speeds of up
to 57.6 kbps (HSCSD technology is supporting the GSM network to the data, but
not as wasteful komersilkan timeslot and replaced by a better GPRS).
iDEN (Integrated Digital Enhanced
Network) in the United States, Canada, Argentina, Brazil, Chile, China,
Colombia, El Salvador, Ecuador, Guam, Israel, Jepan, Jordan, South Korea,
Mexico, Peru, Philippines, Puerto Rico, Saudi Arabia , and Singapore
Is TDMA-based 2G technology developed by
Motorola with the number of networks in 20 countries. Be operating at 25 KHz
channels, radio utilized for trucks and mobile phones.
While technology-based 2G CDMA standards
are:
CdmaOne or IS-95 (Interim Standard 95) or
IS-95 CDMA or TIAEIA-95 in the USA, South Korea, Canada, Mexico, India, Israel,
Australia, Sri Lanka, Venezuela, Brazil, and China
CDMA is a 2G technology that operates based
on two classes of wave Band Class 0 (800 MHz) and Band Class 1 (1900 MHz).
Introduced by Qualcomm in the mid-1990s and supported by AT & T, Motorola,
Lucent, ALPS, GSIC, Prime Co., Samsung, Sony, U.S. West, Sprint, Bell Atlantic,
and Time Warner.
Table 4 Comparison of AMPS, GSM, and
CDMAone
AMPS
|
GSM
|
CDMA/IS-95
|
|
Multiple Access
|
FDMA
|
TDMA
|
DS-CDMA
|
Modulation
|
FM
|
GMSK
|
QPSK
|
Bandwidth RF
|
30 KHz
|
200 Khz
|
1,25 MHz
|
Channel/Carrier RF
|
1
|
8
|
20-30
|
Uplink Frequency
|
824-849 MHz
|
890-915 MHz
|
824-849 MHz
|
Downlink Frequency
|
869-894 MHz
|
935-960 MHz
|
869-894 MHz
|
The three main advantages over its older 2G
networks are digitally encrypted telephone conversations, 2G systems were
significantly more efficient on the spectrum allowing greater penetration rate,
and 2G introduced data reception-delivery service for mobile devices started
with a short message (SMS).
Table 5
Advantages and Disadvantages of Technology 2G, 2.5G, 2.75G
Advantages
|
Disadvantages
|
More services such as voice
communication, SMS (Short Message Service; bidirectional service for sending
short messages of 160 characters), voice mail, call waiting, and transfer
data at a maximum speed of 9600 bps (for SMS, download images, or ringtone
MIDI)
|
The data
transfer rate is low
|
Greater user
capacity
|
Can not
efficiently for low traffic
|
The resulting sound is more clear as
a digital-based (analog voice signal is converted into a digital signal
before it is sent). This change allows the voice signal can be repaired
damage due to noise disturbance or interference of other frequencies.
Improvements were made in the receiver, and then returned again in the form
of an analog signal
|
Network coverage is still limited
and highly dependent on the presence of base stations (cell towers)
|
Efficiency of spectrum / frequency
be increased, as well as the ability
|
|
Optimization of the system as
indicated by the ability of digital compression and coding of data
|
|
Power needed for signal slightly so
as to save battery, the handset can be used for longer, and the size of the
battery can be smaller
|
- 2.5G, 2.75G (and Half Second Generation)
For terms 2G and 3G has been officially
defined, but not for the 2.5G. Naming 2.5G used for marketing purposes only.
The technology is referred to as 2.5G
communication technology which is an improvement of the technology, especially
in the 2G GSM base platform which has undergone improvements, particularly for
data applications. For GSM-based (TDMA) technology implemented in 2.5G GPRS
(General Packet Radio Services) and Widen (Wideband Integrated Dispatch Enhanced
Network), while based cdmaOne (CDMA) is implemented in CDMA2000-1x Release
0/RTT (1 Times Radio Transmission Technology) or IS-2000 (based on ITU
standards) or CDMA2000 (3GPP2 standards based).
Provider 3G 2.5G provides some advantages
(such as packet-switched) and can use some of the existing 2G infrastructure in
GSM and CDMA. GPRS is a 2.5G technology used by GSM operators. Some protocols,
such as EDGE for GSM and CDMA2000 1x-RTT for CDMA, 3G services can be qualified
as (because they have a data transfer rate of over 144 Kbps), but was later
termed as 2.5G services (or as some are calling it the 2.75G sound more
sophisticated) because they are several times slower than 3G services
"true".
GPRS (General Packet Radio Services)
Are the 2.5G technology that is inserted
(overlay) on top of the GSM network to handle data communication on the
network. In other words, by using GPRS handsets, fixed data communication takes
place over a GSM network (with GSM still handle voice communications and data
transfer is handled by GPRS). Development of GPRS over GSM technology can be
done effectively without removing the old infrastructure, with the addition of
several new hardware and software upgrades to the terminal / GSM station and
servers. GPRS data transfer speed can reach up to 160 Kbps. 3 features GPRS
technology has advantages, namely:
- Always Online. GPRS dial mechanism to eliminate the user wants to access data at the time, so it is said GPRS always online due to the transfer of data is sent in the form of packets and does not depend on the connection time.
- An upgrade to existing networks (GSM and TDMA). Adoption of the GPRS system does not need to eliminate the old system because the GPRS is run on top of existing infrastructure.
- An Integral part of EDGE and WCDMA. GPRS is the core of the data packet delivery mechanism for the next 3G technology.
GPRS is divided into three classes based on
their ability, namely:
- Class A
Can be connected to GPRS and GSM
networks (voice and SMS) at the time of its consumer Simultaneously, the device
supports A-class are still available to this day.
- Class B
Can be connected to GPRS and GSM
networks (voice and SMS) but only one can be used at the same time. When the
GSM service (call or SMS) is used, then the GPRS will have to wait and
automatically switches back after the GSM service (call or SMS) is terminated.
Most GPRS devices are included in class B.
- Class C
To connect GPRS or GSM service (voice
and SMS), substitute service must be done manually between the two services
(almost the same as class B turnover only active network is not automatic).
The benefits of GPRS technology:
- Client-Server Services that allows accessing data stored in a database. Examples of the application of these applications are accessing the web through a browser.
- Messaging Services are intended for communication between individual users by making use of the storage server for handling messages as a temporary message storage / intermediate before it is received by the user. Examples of services that is the result of the application of Multimedia Message Service (MMS) is used for multimedia data transmission through the GSM network using a mobile phone.
- Real-time Conversational Services that provide two-way communication services to users in real-time. Some examples of its application are on the Internet and multimedia applications such as Voice over IP (VoIP) and video conferencing.
- Tele-action services that provide services to the transmission and reception of data volume slightly. Examples such as credit card validation, lottery transactions, and indoor surveillance camera system.
Widen (Wideband Integrated Dispatch
Enhanced Network)
Are the 2.5G technology which is the
development of iDEN (2G) of the software developed by Motorola and was
introduced in 1993. Widen able to transfer data at up to speeds of 100 Kbps and
has been used in 20 countries.
CDMA2000-1x Release 0/RTT (1 Times Radio
Transmission Technology) or IS-2000 (based on ITU standards) or CDMA2000 (3GPP2
standards based)
Are the 2.5G technology which is the
development of cdmaOne technology with the addition of Traffic on its services
and operates at a frequency of 400 MHz, 800 MHz, 900 MHz, 1700 MHz, 1800 MHz,
1900 MHz, and 2100 MHz (depending on frequency regulation of each country).
Table 6
Regional Implementation of CDMA2000
Regional
|
Operators
|
United
States
|
Verizon
Wireless, Sprint PCS, Alltel, MetroPCS, Cellular South, U.S. Cellular,
Cellcom, and Cricket Communications (Leap Wireless to)
|
South Africa
|
Neotel (800 MHz)
|
Bangladesh
|
Pacific Telecom's CityCell
|
Brazil
|
VIVO
|
China
|
China Unicom
|
Estonia
|
Eesti Energia (450 MHz)
|
India
|
BSNL, Reliance Communications and Tata Teleservices
|
Indonesia
|
Mobile-8, Bakrie Telkom, Telkom Flexi, and Indosat Starone
|
Canada
|
SaskTel, Manitoba Telecom Services, Bell Mobility, Aliant,
and TELUS Mobility
|
Kenya
|
Telcom Kenya, Flashcom LTD, and E.M. Communications Ltd
|
Latvia
|
Lavia Triatel
|
Marocco
|
Wana
|
Mexico
|
Iusacell and Unefon
|
Moldova
|
Moldova Unite
|
Nepal
|
Nepal Telecom and United Telecom Limited
|
Pakistan
|
PTCL, World Call, and GoCdma
|
New Zealand
|
New Zealand Telecom
|
Sri Lanka
|
Sri Lanka Telecom (SLT), Suntel, and Lanka Bell (800 MHz),
dan DBN and Tritel (450 MHz)
|
Ukraina
|
PEOPLEnet
|
Venezuela
|
Movilnet and Movistar
|
- 3G (Third Generation)
3G technology is third-generation
communication technologies are becoming a standard mobile phone technology
(mobile phone), replacing 2.5G. It is based on the ITU (International
Telecommunication Union) to the IMT-2000 standard.
3G networks enable network operators to
offer a wider range of advanced facilities while achieving greater network
capacity through improved efficiency of spectrum usage. His ability to include
voice communications in a range of wireless wide area (wide-area wireless voice
telephony), video calls (video calls), and wireless high-speed data lines
(broadband wireless data), and it works in all mobile devices (mobile).
Additional amenities also include HSPA data transmission which is able to
transmit data at speeds up to 14.4 Mbps on the downlink and 5.8 Mbps in the
uplink.
Mendefisikan ITU as 3G technologies:
1. Has a data transfer speed of 144 Kbps on
users moving at a speed of 100 km / h.
2. Has a data transfer speed of 384 Kbps to
users who walk away.
3. Has a data transfer rate of 2 Mbps in
stationary users (stationary).
3G technology was introduced in the
beginning is for the following purposes:
1. Adding to the efficiency and capacity of
the network.
2. Adds roaming capabilities (roaming).
3. To achieve data transfer speeds higher.
4. Improved quality of service (QoS or
Quality of Service).
5. Support the needs of mobile internet
(mobile internet).
Frequencies used by 3G technology, namely:
1. Frequency of admission (downlink)
1920-1980 MHz
2. Frequency deliveries (uplink) from 2110
to 2170 MHz
3G technology which includes:
EDGE (Enhanced Data Rates for GSM
Evolution) or E-GPRS (Enhanced General Packet Radio Services-)
Is a 3G technology that is one standard for
wireless data is implemented on a GSM cellular network. First introduced in
2003 and is a further stage in the evolution towards mobile multimedia
communication.
Originally called 2.75G EDGE technology.
However, since mid-2000, International technology platform GERAN (GSM EDGE
Radio Access Network) has adopted all over the 3GPP specifications (one of
which is the same data transfer speed with 3G) EDGE technology making in the
group of third-generation UMTS 3G technology.
With EDGE, the service provider can provide
data communication services with high-speed Iebih than GPRS, where GPRS is only
capable of sending data at a rate of about 25 Kbps. So also when compared to
other platforms, EDGE capabilities reach 3-4 times the speed of access to the
telephone line cable (usually around 30-40 Kbps) and nearly 2 times the speed
of CDMA2000-1x which is only about 70-80 Kbps. EDGE data transfer speed can
even reach speeds of up to 236.8 Kbps using 4 timeslots and 473.6 Kbps using 8
timeslots.
EDGE technology-based services capable of
providing a wide range of applications of third generation services, namely:
high quality audio streaming, video streaming, online gaming, high speed
download, high speed network connection, push to talk, and others. As of
November 2006, EDGE has implemented GSM 156 network operators in 92 countries
and will continue to evolve into a GSM 213 network operators in 118 countries.
W-CDMA (Wideband-Coded Division Multiple
Access) or UMTS (Universal Mobile Telecommunication System)
3G technology is being developed in Europe
and mualai introduced in 2004. Standardization of UMTS is done by ETSI
(European Telecommunication Standard Institution), in addition to the ITU-T
(International Telecommunications Union Telecommunication Standardization
intertational Sector) working on a similar system called IMT 2000
(International Mobile Telecommunation System 2000). Both of these
standardization bodies can cooperate to form a system for the future.
UMTS is designed so as to provide a
bandwidth of 2 Mbps. UMTS services can be provided to meet user demand pursued
wherever located, which means that UMTS is expected to serve an area as wide as
possible, if there is no UMTS cells in an area, it can be a route via
satellite.
UMTS can be used by offices, homes and
vehicles. The same service can be provided to users indoors and outdoors,
public areas and private areas, urban and rural.
Radio frequencies are allocated for UMTS
1885-2025 MHz and 2110-2200 MHz. The tape will be used by small cells (pico
cell) so as to provide a large capacity in UMTS. Multiple access is used to
dynamically allocate bandwidth according to customer requirements. RACE
(Research and Technology Development in Advanced Communications Technologies in
Europe) has developed two types of multiple access, CDMA and TDMA ie, from both
of these to be used has not been decided.
W-CDMA has been in implentasikan in Japan,
Europe, and Asia, and will be developed in 55 countries in 2006. UMTS frequency
different regions:
1. Asian and European (mostly) at a
frequency of 2100 MHz (downlink) and 1900 MHz (uplink)
2. United States (by AT & T Mobility)
at a frequency of 1900 MHz MHz/850.
3. America at a frequency of 2100 MHz
(downlink) 1700 MHz (uplink).
4. Europe at a frequency of 900 MHz.
5. Australia and Japan at a frequency of
800 MHz.
CDMA2000-1x EV / DV (Evolution / Data /
Voice) and CDMA2000-1x EV-DO (Data Only / Data Optimized) or IS-856
3G technology is supported by the North
American CDMA community, led by the CDG (CDMA Development Group). CDMA2000-1x
EV (Evolution) and CDMA2000 1x-EV-DO technology is the development of
CDMA2000-1x or CDMA2000 Release 0/RTT (2.5G). At first CDMA2000-1x EV-DO
(Revision 0) can only send data up to 2.4 Mbps, but then evolved so
CDMA2000-1x-EV-DO (data only) have speed like the chart below.
Table 7
Distribution of CDMA2000-1x Speed
Speed
|
Supported
Applications
|
|
CDMA2000-1x EV-DO Revision A (T-1 speeds)
|
2,45-3,1
Mbps
|
Video
conference
|
CDMA2000-1x EV-DO Revision B
|
Average
300 Kbps, maximum 73,5 Mbps
|
Data
transmisi
|
CDMA2000-1x EV-DV
|
Average
300 Kbps, maximum 3,09 Mbps
|
Integration of voice and multimedia
services of high speed packet data simultaneously
|
CDMA2000-1x EV-DO Revision C or UMB (Ultra Mobile
Broadband)
|
A maximum of 280 Mbps at peak
condition, 275 Mbps downstream, 75 Mbps upstream (so it can be categorized in
4G)
|
Voice over IP (VoIP), multimedia,
broadband, information, entertainment , commercial electronic services, and
supports full wireless network services in a mobile environment (thus the
same as Wi-Fi, WiMAX, and UWB)
|
TD-CDMA (Time Division Code Division
Multiple Access) or UMTS-TDD (Universal Mobile Telecommunication System Time
Division Duplexing-) in Europe
3G data network technology is built on a
standard mobile phone networks UMTS / WCDMA in which both the UMTS / WCDMA and
TD-CDMA/UMTS-TDD not support each other because of differences in the workings,
design, technology and frequencies used. In Europe the frequency used UMTS-TDD
is on 2010-2020 MHz which can transfer data at a speed of 16 Mbps (when the
maximum speed downlink and uplink).
GAN (Generic Access Network) or UMA
(Unlicensed Mobile Access)
3G technology is intended to allow roaming
to telecommunications systems and can handle a LAN (WLAN) and wireless WAN
phone simultaneously (adopted by 3GPP).
HSPA (High-Speed Packet Access)
3G technology is the technology of which is
the union of the previous protocol of mobile technology, thus expanding and
adding capabilities (especially in terms of data transfer rate) of the UMTS
protocols that have been there before. Because of differences in Traffic
(downlink and uplink) the HSPA standard is divided into 2, namely:
- HSDPA (High Speed Downlink Packet Access)
An HSPA standard with the capability of its
transfer speed downlink (from the network to the handset), which can reach
speeds of HSDPA 7.2 Mbps downlink and in theory can ditinggkatkan up to 14.4
Mbps with a maximum speed of 384 kbps uplink. HSDPA but can be used by mobile
phones but can also be used by the notebook to access the data at high speed.
- HSUPA (High Speed Uplink Packet Access)
An HSPA standard with the capability of its
uplink transfer speed (from the handset to the network), which can reach speeds
HSUPA uplink speeds theoretically up to 5.76 Mbps, but this does not
implentasikan HSUPA (commercialized) and its handsets are not made.
HSPA + (HSPA Evolution)
3G technology is HSPA dikembangankan. This
technology has a data transfer rate up to 42 Mbps on the downlink and 11 Mbps
on the uplink.
FOMA (Freedom of Mobile Multimedia
Access)
Technology is the world's first 3G WCDMA
mengimplentasikan. FOMA 3G service by naming an operator NTT DoCoMo in Japan.
HSOPA (High Speed OFDM Packet Access)
3G technology is primarily dikembangankan
of UMTS antenna technology that uses OFDM (Orthogonal Frequency Division
Multiplexing) and MIMO (Multiple-Input Multiple-Output). HSOPA also known as
Super 3G can download data transfer speeds up to 100 Mbps in the downlink and
50 Mbps on the uplink.
TD-SCDMA (Time Division Synchronous Code
Division Multiple Access)
3G technology is still being developed
China by CATT (Chinese Academy of Telecommunications Technology), Come, and
Siemens AG on a proposal from the group CWTS (China Wireless Telecommunication
Standards) to the ITU in 1999. The technology was developed to eliminate the
dependence on western technology, but lacking much in demand by operators in
Asia because the equipment requires a completely new and can not use the
previous technology (CDMA2000-1x). TD-SCDMA uses 2010-2025 MHz frequency, with
data transfer speeds of 9.6 Kbps to 2048 Kbps.
Table 8
Advantages and Disadvantages of 3G technology, 3.5G, 3.75G
Advantages
|
Disadvantages
|
Has a fast data transfer speeds (144
Kbps - 2 Mbps); 2 Mbps for local / indoor / slow - moving access ; 384 Kbps
for wide area access
|
Requires power control
"ideal"
|
Broadband data services such as
Internet , video conferencing , video streaming , video on demand , music on
demand , games on demand
|
Not to insufficiency of data
transfer speed in serving multimedia services that require a qualified speed
|
The sound quality is better
|
|
Security is assured
|
|
Support multiple simultaneous
connections (users can browse the Internet simultaneously by passing the
call)
|
|
Shared infrastructure can support
many operators in the same location
|
|
Interconnect to other mobile and
fixed users
|
|
National and international roaming
|
|
Can handle packet - and
circuit-switched service , including internet ( IP ) and video conferencing ,
is also high data rate communication services of data transmission and
asymmetric
|
|
Efiensi good spectrum , so as to
utilize the maximum bandwidth is limited
|
|
Support for multiple cell layers
|
|
Co -existance and interconnection
with satellite - based services
|
|
The new billing mechanism depends on
the volume of data , quality of service , and time
|
- 3.5G, 3.75G (Third and A Half Generation)
3.5G or 3G is also known as Beyond 3G
technology improvement, especially in improving data transfer speeds over 3G
technology (above 2 Mbps) so that it can serve multimedia communications such
as Internet access and video sharing. Included in this technology are:
HSDPA (High Speed Downlink Packet
Access)
Are the 3.5G technology which is the
evolution of Ericsson's WCDMA. HSDPA is an additional protocol to the system
WCDMA (Wideband CDMA), which is capable of transmitting high-speed data.
The first phase of HSDPA 4.1 Mbps capacity.
Then followed a second phase with a capacity of 11 Mbps and maximum capacities
downlink peak data rate of up to 14 Mbps.
HSDPA network speed in a residential area
can perform data download speed 3.7 Mbps. A person who was driving on the
motorway speed of 100 km / h can access the internet speed of 1.2 Mbps.
Meanwhile, users in an office environment that is solid still can enjoy
streaming video despite only gaining 300 Kbps.
The advantages of HSDPA is to reduce the
delay (delay) and provide a faster response when the user uses an interactive
application such as a mobile office or high-speed internet access, which can be
accompanied by a gaming facility or downloaded audio and video. Another
advantage of HSDPA, increase system capacity without requiring additional
frequency spectrum, so it would reduce the cost of mobile data services
significantly.
WiBro (Wireless Broadband)
Are the 3.5G technology that Samsung
developed jointly by ETRI (Electronics and Technology Research Institute) and
has been certified by the WiMAX Forum. WiBro is part of the policy of South
Korea's information technology policy, known as 839. WiBro is able to transmit
data at speeds up to 50 Mbps. The data transfer speed of HSDPA platform is able
to surpass the speed of the speed up to 14 Mbps.
- 4G (Forth Generation)
4G technology (also known as Beyond 3G)
communication technology is a term used to describe the next evolution in
wireless communications. According to the 4G working group (working groups 4G),
infrastructure and terminals used 4G will have almost all the standards from 2G
to 3G applied. 4G systems will also act as an open platform where the new
innovations can flourish. 4G technology will be able to provide Internet
Protocol (IP) Comprehensive where voice, data and streamed multimedia can be
given to the users "anytime, anywhere", and the data transmission
rate is higher than the previous generation.
Many companies already define their own
meaning of the 4G to declare that they already have 4G, WiMAX launch such an
experiment, and even some other company that says it's made a prototype system
called 4G. Although it may be some technology that comes now this can be a part
of 4G, until the 4G standard has been defined, it is impossible for any company
today is in providing certainty wireless solutions that can be called 4G mobile
network in accordance with the appropriate international standards for 4G.
Things like that are messed statement about the "existence" of 4G services
so that investors and analysts tend to confuse the wireless industry. Most of
the standards that prepare the way for 4G technologies include:
UMTS Revision 8 LTE or 3GPP (Third
Generation Partnership Project Long Term Evolution)
4G technology is still under development by
the 3GPP (Third Generation Partnership Project). This technology is planned to
have an average download speed of 100 Mbps and an average upload speed of 50
Mbps, so it supports all network-based Internet Protocol (IP).
WiMAX (Worldwide Interoperability for
Microwave Access)
4G is the technology that has the ability
to transfer data wirelessly remote, also point to point access to support full
access mobile phone (mobile phone), so it can be an alternative to wired
broadband networks and DSL. In WiMAX applications using frequencies ranging
from 3.3 GHz, 3.5 GHz, 2.3 GHz, 2.5 GHz, and 5 GHz (depending on frequency
regulation of each country). WiMAX can theoretically transmit data up to 70
Mbps speed within 48 Km, but in prateknya WiMAX is only able to transmit data
at a speed of 10 Mbps within a distance of 10 Km for interference-free area
(suburbs) and 10 Mbps within a distance of 2 km for urban areas (urban).
UMB (Ultra Mobile Broadband) or
CDMA2000-1x EV-DO Revision C
Table 9
Advantages of 4G Technology
Advantages
|
Supports interactive multimedia
services, teleconferencing, wireless intenet
|
Large bandwidth to support
multimedia service
|
Bit rates greater than 3G
|
Global mobility (scalability for
mobile networks), service portability, low-cost service (low cost up to 100
Mbps)
|
Fully for packet-switched networks
|
Network security is a powerful data
|
Ø Broadband Technology
Broadband technology is generally defined
as a network or the Internet service that has a high transfer speed for large
data path width. Although the data lines provided to its very wide, broadband
technology is usually split lanes wide with surrounding users. But if no one is
using, the user will use the fully broadband.
Broadband or wideband technology is one
technology that supports media transminsi many frequencies, ranging from the
frequency of the sound to the video. This technology can carry multiple signals
by dividing the capacity (very large) in a channel bandwidth. Each channel
operates at a specific frequency. Simply put, the term broadband technology is
used to describe a connection speed of 500 Kbps or more. But the FCC defines
broadband with a minimum speed of 200 Kbps. There are two common types of
broadband, DSL and cable modems ie, capable of transferring 512 Kbps or more,
roughly 9 times faster than modems that use a standard telephone cable.
Currently, the broadband wireless technology is the ultimate goal of the
evolution of telecommunication technology.
What is offered by broadband service? Of
course, high-speed data access multimedia services in the form of images,
audio, and video, including video streaming, video downloading, video telephony,
and video messaging. Through devices that support this technology, users can
also access mobile TV entertainment and download music, and perform real-time
communication using fixed-mobile technology, such as a webcam through a mobile
phone.
Broadband is a high speed connection that
allows fast access to the Internet and always-connected or "always
on". If traced back, the history of the discovery of mobile broadband from
a fiber optic cable in 1950, where previously the needs of data communication
in high speed is not required. Only in the 1990s appeared a great need to
transfer high-speed data and broadband era began. At that time, the flagship
over fiber optic cable.
In 1999, the development of large capacity
and data transfer speed is more often used, especially with the rise of cable
TV service which requires a cable modem. At that time, no less than 1.5 million
cable TV subscribers increasingly animate a new era, broadband. However,
because the fiber optic cable is quite expensive, the development of broadband
may be relatively slow, and the user is limited.
Later, though cable TV has been a lot of
customers, more development is triggered by the advent of technology ADSL
(asymmetric digital subscriber line). ADSL could miss the millions of bits of
information in a matter of seconds on the regular telephone network. ADSL
broadband works on two speeds, receive and send data, so it is suitable for
browsing and sending or receiving e-mail. Data transmission speed, slower than
receiving data. ADSL standards receive data or information on speed 2 Mbps (35
times faster than a standard modem) and send data at speeds of 256 Kbps (five
times faster). However, broadband capacity generally ranges between 256 Kbps
and 10 Mbps.
In addition to ADSL, SHDSL Broadband exist
(symmetric high bit rate DSL), which is able to send and receive data at the
same speed, which is up to 2 Mbps. Therefore, SHDSL is suitable for a variety
of businesses that require large amounts of data and high speed, such as
sending and receiving e-mails with large attachments, audio and video files.
Broadband is increasingly showing rapid development. By the end of 2004 the
number of subscribers has reached 140 million and growing very fast.
Research Yankee Group estimates that in
2008 there will be 325 million next customer. Therefore, broadband is arguably
the fastest growing technology in history. If the mobile phone (mobile phone)
takes 5.5 years to grow from 10 million to 100 million users worldwide, the
broadband achieve in just 3.5 years.
Rapid growth is largely driven by
developments in the Asia Pacific region, particularly Japan and South Korea.
With a population of 48.6 million people, where 10 million people live in
Seoul, Korea in 2004 Internet users has reached 35.7 million. At the same time,
of that amount, 84 percent (30 million) are broadband subscribers, either using
a DSL or cable modem. In 2008, Korea is targeting to achieve 100% broadband
customers.
On the other hand, although may use a
variety of technologies, but the operator can not provide all types of
technology, and on the contrary there is no one technology for all purposes of
broadband services. A wide variety of choices and business aspects that are
based on developmental needs, so as to provide optimal results, both in service
and business acquisition, should be considered forward strategically.
Future developments, it seems no longer
stuck in contrasting between DSL vs. cable modem or fixed-line vs. wireless.
Although the development of wireless 3G or 4G service to the equally thrill.
This time forward, it seems there will be plenty of options, ranging from wired
connection to wireless, ranging from ADSL, ADSL2 +, VDSL, VDSL2, Ethernet, up
to Wi-Fi, 802.16 (WiMAX), and FTTH (fiber-to-the-home ) or FTTB (fiber-to-the-building).
Later, it will also evolve MBWA (Mobile Broadband Wireless Access). Hybrid
approach, which combines several capabilities, by John Giametto, President of
Nortel Networks Asia, referred to as "ultrabroadband". This is a
logical approach to serving the diverse needs of the broadband. Ultrabroadband
refers to various combinations of the needs of service providers.
For countries such as Indonesia and
Thailand, building wiring is not only difficult, but also expensive,
alternative wireless becomes more logical. This is evidenced by the effort to
hold Telkom ADSL services with brand TelkomLink Multi Media Access (MMA). Later
Telkom Speedy also appeared with the product.
As another example, India. In the land of
Bollywood, there are 40 million landlines and about 4 million computers. With a
market where every house that has only one-tenth phones have a PC, then you
should not develop high-speed Internet access, but directly develop video
services, because almost every house must have a TV. Therefore, the development
of broadband should support the so-called value-added broadband, which is able
to provide a new experience as easy as a simple turn on the TV, regardless of
the device used.
However, the challenge does not stop there,
because to provide such services, which means it requires multi-access
technology, required a high level of interoperability, making it easier for
network management and customers. Another challenge is how operators can
cooperate with a number of content providers and services to further enrich its
content.
The challenge to provide broadband services
based on the customer, thus, should be pursued. Flagship, this time, of course,
not only in wired networks, but also wireless. However, in the future there are
at least some prospective technology for it, which is regarded as the next step
of development of broadband technology, among others: Metro Ethernet, VDSL /
ADSL 2 +, FTTH, IP Wireless, CDMA 1x EV-DO and WiMAX.
Sources:
http://id.wikipedia.org/wiki/Sejarah_perkembangan_komputer
http://tips-watan.blogspot.com/2012/11/teknologi-0g-1g-2g-25g-3g-35g-dan-4g.html
http://hamam21.blogspot.com/2009/03/apa-itu-broadband.html
No comments :
Post a Comment